

CAP SETTING, SCOPE AND COVERAGE OF AN ETS

Michael Mehling

Deputy Director, CEEPR at Massachusetts Institute of Technology (MIT)

Background Reading

ICAP/PMR Handbook Emissions Trading in Practice 2nd ed. (2021) Chapter 3: "Decide the Scope" (pp. 55-76) Chapter 4: "Set the Cap" (pp. 77-96)

Available at: https://icapcarbonaction.com/system/files/ document/ets-handbook-2020_finalweb.pdf

What is the function of the cap?

- The 'cap' is the maximum quantity of allowances issued by the government over a defined period of time
- It limits emissions by covered sources and thus directly determines the environmental outcome
- The cap thus:
 - expresses the ambition level (relative to 'Business-as-Usual')
 - defines the need to abate emissions, and therefore sets
 - the scarcity of emission allowances and ultimately their price
- It needs to reflect the ambition level of the climate targets it is supposed to achieve – and depending on the type of target, it can be derived from the target

Guiding considerations when setting the cap

- National climate policy objectives and trends
 - Is there a target (or several) to translate?
 - What are the trends in the relevant sectors?
 - How should the cap be balanced with emissions from uncapped sectors?
- Technical potential to reduce emissions
 - Technological trajectories, sector scenarios, high-level mitigation potentials
- Economic potential to reduce emissions
 - Abatement cost in the different sectors
 - (Dis-)investment cycles

Climate policy targets: a typology

- Absolute emission targets
- Relative emission reduction targets (relative to a historical or projected baseline)
- Emission **intensity** targets (emissions per unit of production, GDP, capita etc.)
- **Technology targets** (e.g. share of renewable energy in final energy demand, energy efficiency, etc.)

... and combinations of the above!

From climate policy target to ETS cap

Absolute emission target

Emission reduction target (below BAU)

Emission intensity target

- Straightforward case: The broader the coverage, the more directly the cap derives from the emission target (at 100% coverage, both would have to be equal). For partial coverage, the effort needs to be distributed between the ETS and the non-covered sectors
- Cap will still need to be expressed in absolute emissions. Formulation of target with reference to BAU means that BAU may be updated – also revisiting the cap. Problematic: what happens if the economy falls (far) short of BAU
- For any year, the cap still needs to be expressed in absolute emissions. Intensity-based target suggests that the cap is updated annually (e.g. based on last year's GDP growth)

Alternative approaches to cap-setting

Why it is important to get the cap right

- Periods of low prices have been observed in a majority of ETS to date
- Oversupply of allowances can result from structural changes in energy supply, economic crises, excessive supply of offset credits etc.

Balancing predictability and flexibility when setting the cap

 Predictability: market confidence will only emerge if the cap is sufficiently independent from political interventions

 Flexibility: responding to new developments (political, economic, technological, etc.) to ensure that the ETS cap remains sufficiently stringent

Possible solutions:

- Periodic review of the cap (based on clear standards and criteria)
- Mechanisms for cap adjustment (rule-based, price or quantity trigger)
- Rolling cap

ETS scope and coverage: many different options are possible

Forestry

Waste

Domestic

Transport

Building

Industr

Power

Aviation

Determining the scope of an ETS

 Not all sectors/ abatement potentials are equally suited for carbon pricing

Source: Agora Energiewende & Ecologic Institute, 2021

More criteria to determine the scope of an ETS

- Does the sector/activity represent a significant share of emissions? Are there viable mitigation options?
- Are emissions already covered by other policies?
- Is the sector "used" to pricing or market approaches? What is the market structure?
- Can emissions from the sector/activity be monitored with reasonable accuracy?
- Are transaction costs manageable?
- Are there political issues that need to be addressed (distributional effects, industrial competitiveness)?

Coverage of greenhouse gases

Jurisdiction	CO2	CH4	N ₂ O	HFCs	PFCs	SF ₆	NF ₃
California							
China national and pilots*	•						
EU							
Kazakhstan							
Massachusetts							
Mexico Pilot							
New Zealand							
Nova Scotia							
Québec							
Republic of Korea	•	•		•	•	•	
Regional Greenhouse Gas Initiative (RGGI)	•						
Switzerland							
Toykyo-Saitama							

- I ETS cover **CO**, from energy
- lany also cover N₂O and PFCs
- ome ETS cover additional industrial uses (all 6 'Kyoto GHGs' and NF₃)

Point of regulation

• Upstream:

extractors and importers / vendors of fossil fuels have to report (embodied) emissions of the fuels produced and surrender allowances

• At the source of emissions:

actual (point-source) emitters measure and report their emissions and surrender allowances

Downstream:

consumers pay for the emissions released in the production of a good (e.g. electricity)

Thresholds for small emitters

Source: European Commission "Small installations within the EU ETS"

THANKYOU!

